3.8.21 \(\int \frac {(c+d x)^{5/2}}{x^5 \sqrt {a+b x}} \, dx\) [721]

3.8.21.1 Optimal result
3.8.21.2 Mathematica [A] (verified)
3.8.21.3 Rubi [A] (verified)
3.8.21.4 Maple [B] (verified)
3.8.21.5 Fricas [A] (verification not implemented)
3.8.21.6 Sympy [F]
3.8.21.7 Maxima [F(-2)]
3.8.21.8 Giac [B] (verification not implemented)
3.8.21.9 Mupad [F(-1)]

3.8.21.1 Optimal result

Integrand size = 22, antiderivative size = 229 \[ \int \frac {(c+d x)^{5/2}}{x^5 \sqrt {a+b x}} \, dx=\frac {5 (b c-a d)^2 (7 b c+a d) \sqrt {a+b x} \sqrt {c+d x}}{64 a^4 c x}-\frac {5 (b c-a d) (7 b c+a d) \sqrt {a+b x} (c+d x)^{3/2}}{96 a^3 c x^2}+\frac {(7 b c+a d) \sqrt {a+b x} (c+d x)^{5/2}}{24 a^2 c x^3}-\frac {\sqrt {a+b x} (c+d x)^{7/2}}{4 a c x^4}-\frac {5 (b c-a d)^3 (7 b c+a d) \text {arctanh}\left (\frac {\sqrt {c} \sqrt {a+b x}}{\sqrt {a} \sqrt {c+d x}}\right )}{64 a^{9/2} c^{3/2}} \]

output
-5/64*(-a*d+b*c)^3*(a*d+7*b*c)*arctanh(c^(1/2)*(b*x+a)^(1/2)/a^(1/2)/(d*x+ 
c)^(1/2))/a^(9/2)/c^(3/2)-5/96*(-a*d+b*c)*(a*d+7*b*c)*(d*x+c)^(3/2)*(b*x+a 
)^(1/2)/a^3/c/x^2+1/24*(a*d+7*b*c)*(d*x+c)^(5/2)*(b*x+a)^(1/2)/a^2/c/x^3-1 
/4*(d*x+c)^(7/2)*(b*x+a)^(1/2)/a/c/x^4+5/64*(-a*d+b*c)^2*(a*d+7*b*c)*(b*x+ 
a)^(1/2)*(d*x+c)^(1/2)/a^4/c/x
 
3.8.21.2 Mathematica [A] (verified)

Time = 0.54 (sec) , antiderivative size = 200, normalized size of antiderivative = 0.87 \[ \int \frac {(c+d x)^{5/2}}{x^5 \sqrt {a+b x}} \, dx=\frac {(-b c+a d)^3 \left (\frac {\sqrt {a} \sqrt {c} \sqrt {a+b x} \sqrt {c+d x} \left (-105 b^3 c^3 x^3+5 a b^2 c^2 x^2 (14 c+53 d x)-a^2 b c x \left (56 c^2+172 c d x+191 d^2 x^2\right )+a^3 \left (48 c^3+136 c^2 d x+118 c d^2 x^2+15 d^3 x^3\right )\right )}{(b c-a d)^3 x^4}+15 (7 b c+a d) \text {arctanh}\left (\frac {\sqrt {c} \sqrt {a+b x}}{\sqrt {a} \sqrt {c+d x}}\right )\right )}{192 a^{9/2} c^{3/2}} \]

input
Integrate[(c + d*x)^(5/2)/(x^5*Sqrt[a + b*x]),x]
 
output
((-(b*c) + a*d)^3*((Sqrt[a]*Sqrt[c]*Sqrt[a + b*x]*Sqrt[c + d*x]*(-105*b^3* 
c^3*x^3 + 5*a*b^2*c^2*x^2*(14*c + 53*d*x) - a^2*b*c*x*(56*c^2 + 172*c*d*x 
+ 191*d^2*x^2) + a^3*(48*c^3 + 136*c^2*d*x + 118*c*d^2*x^2 + 15*d^3*x^3))) 
/((b*c - a*d)^3*x^4) + 15*(7*b*c + a*d)*ArcTanh[(Sqrt[c]*Sqrt[a + b*x])/(S 
qrt[a]*Sqrt[c + d*x])]))/(192*a^(9/2)*c^(3/2))
 
3.8.21.3 Rubi [A] (verified)

Time = 0.27 (sec) , antiderivative size = 214, normalized size of antiderivative = 0.93, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.273, Rules used = {107, 105, 105, 105, 104, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(c+d x)^{5/2}}{x^5 \sqrt {a+b x}} \, dx\)

\(\Big \downarrow \) 107

\(\displaystyle -\frac {(a d+7 b c) \int \frac {(c+d x)^{5/2}}{x^4 \sqrt {a+b x}}dx}{8 a c}-\frac {\sqrt {a+b x} (c+d x)^{7/2}}{4 a c x^4}\)

\(\Big \downarrow \) 105

\(\displaystyle -\frac {(a d+7 b c) \left (-\frac {5 (b c-a d) \int \frac {(c+d x)^{3/2}}{x^3 \sqrt {a+b x}}dx}{6 a}-\frac {\sqrt {a+b x} (c+d x)^{5/2}}{3 a x^3}\right )}{8 a c}-\frac {\sqrt {a+b x} (c+d x)^{7/2}}{4 a c x^4}\)

\(\Big \downarrow \) 105

\(\displaystyle -\frac {(a d+7 b c) \left (-\frac {5 (b c-a d) \left (-\frac {3 (b c-a d) \int \frac {\sqrt {c+d x}}{x^2 \sqrt {a+b x}}dx}{4 a}-\frac {\sqrt {a+b x} (c+d x)^{3/2}}{2 a x^2}\right )}{6 a}-\frac {\sqrt {a+b x} (c+d x)^{5/2}}{3 a x^3}\right )}{8 a c}-\frac {\sqrt {a+b x} (c+d x)^{7/2}}{4 a c x^4}\)

\(\Big \downarrow \) 105

\(\displaystyle -\frac {(a d+7 b c) \left (-\frac {5 (b c-a d) \left (-\frac {3 (b c-a d) \left (-\frac {(b c-a d) \int \frac {1}{x \sqrt {a+b x} \sqrt {c+d x}}dx}{2 a}-\frac {\sqrt {a+b x} \sqrt {c+d x}}{a x}\right )}{4 a}-\frac {\sqrt {a+b x} (c+d x)^{3/2}}{2 a x^2}\right )}{6 a}-\frac {\sqrt {a+b x} (c+d x)^{5/2}}{3 a x^3}\right )}{8 a c}-\frac {\sqrt {a+b x} (c+d x)^{7/2}}{4 a c x^4}\)

\(\Big \downarrow \) 104

\(\displaystyle -\frac {(a d+7 b c) \left (-\frac {5 (b c-a d) \left (-\frac {3 (b c-a d) \left (-\frac {(b c-a d) \int \frac {1}{\frac {c (a+b x)}{c+d x}-a}d\frac {\sqrt {a+b x}}{\sqrt {c+d x}}}{a}-\frac {\sqrt {a+b x} \sqrt {c+d x}}{a x}\right )}{4 a}-\frac {\sqrt {a+b x} (c+d x)^{3/2}}{2 a x^2}\right )}{6 a}-\frac {\sqrt {a+b x} (c+d x)^{5/2}}{3 a x^3}\right )}{8 a c}-\frac {\sqrt {a+b x} (c+d x)^{7/2}}{4 a c x^4}\)

\(\Big \downarrow \) 221

\(\displaystyle -\frac {(a d+7 b c) \left (-\frac {5 (b c-a d) \left (-\frac {3 (b c-a d) \left (\frac {(b c-a d) \text {arctanh}\left (\frac {\sqrt {c} \sqrt {a+b x}}{\sqrt {a} \sqrt {c+d x}}\right )}{a^{3/2} \sqrt {c}}-\frac {\sqrt {a+b x} \sqrt {c+d x}}{a x}\right )}{4 a}-\frac {\sqrt {a+b x} (c+d x)^{3/2}}{2 a x^2}\right )}{6 a}-\frac {\sqrt {a+b x} (c+d x)^{5/2}}{3 a x^3}\right )}{8 a c}-\frac {\sqrt {a+b x} (c+d x)^{7/2}}{4 a c x^4}\)

input
Int[(c + d*x)^(5/2)/(x^5*Sqrt[a + b*x]),x]
 
output
-1/4*(Sqrt[a + b*x]*(c + d*x)^(7/2))/(a*c*x^4) - ((7*b*c + a*d)*(-1/3*(Sqr 
t[a + b*x]*(c + d*x)^(5/2))/(a*x^3) - (5*(b*c - a*d)*(-1/2*(Sqrt[a + b*x]* 
(c + d*x)^(3/2))/(a*x^2) - (3*(b*c - a*d)*(-((Sqrt[a + b*x]*Sqrt[c + d*x]) 
/(a*x)) + ((b*c - a*d)*ArcTanh[(Sqrt[c]*Sqrt[a + b*x])/(Sqrt[a]*Sqrt[c + d 
*x])])/(a^(3/2)*Sqrt[c])))/(4*a)))/(6*a)))/(8*a*c)
 

3.8.21.3.1 Defintions of rubi rules used

rule 104
Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x 
_)), x_] :> With[{q = Denominator[m]}, Simp[q   Subst[Int[x^(q*(m + 1) - 1) 
/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^(1/q)], x] 
] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && L 
tQ[-1, m, 0] && SimplerQ[a + b*x, c + d*x]
 

rule 105
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_), x_] :> Simp[(a + b*x)^(m + 1)*(c + d*x)^n*((e + f*x)^(p + 1)/((m + 
1)*(b*e - a*f))), x] - Simp[n*((d*e - c*f)/((m + 1)*(b*e - a*f)))   Int[(a 
+ b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, 
e, f, m, p}, x] && EqQ[m + n + p + 2, 0] && GtQ[n, 0] && (SumSimplerQ[m, 1] 
 ||  !SumSimplerQ[p, 1]) && NeQ[m, -1]
 

rule 107
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_), x_] :> Simp[b*(a + b*x)^(m + 1)*(c + d*x)^(n + 1)*((e + f*x)^(p + 1 
)/((m + 1)*(b*c - a*d)*(b*e - a*f))), x] + Simp[(a*d*f*(m + 1) + b*c*f*(n + 
 1) + b*d*e*(p + 1))/((m + 1)*(b*c - a*d)*(b*e - a*f))   Int[(a + b*x)^(m + 
 1)*(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x 
] && EqQ[Simplify[m + n + p + 3], 0] && (LtQ[m, -1] || SumSimplerQ[m, 1])
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 
3.8.21.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(592\) vs. \(2(191)=382\).

Time = 0.57 (sec) , antiderivative size = 593, normalized size of antiderivative = 2.59

method result size
default \(\frac {\sqrt {d x +c}\, \sqrt {b x +a}\, \left (15 \ln \left (\frac {a d x +b c x +2 \sqrt {a c}\, \sqrt {\left (b x +a \right ) \left (d x +c \right )}+2 a c}{x}\right ) a^{4} d^{4} x^{4}+60 \ln \left (\frac {a d x +b c x +2 \sqrt {a c}\, \sqrt {\left (b x +a \right ) \left (d x +c \right )}+2 a c}{x}\right ) a^{3} b c \,d^{3} x^{4}-270 \ln \left (\frac {a d x +b c x +2 \sqrt {a c}\, \sqrt {\left (b x +a \right ) \left (d x +c \right )}+2 a c}{x}\right ) a^{2} b^{2} c^{2} d^{2} x^{4}+300 \ln \left (\frac {a d x +b c x +2 \sqrt {a c}\, \sqrt {\left (b x +a \right ) \left (d x +c \right )}+2 a c}{x}\right ) a \,b^{3} c^{3} d \,x^{4}-105 \ln \left (\frac {a d x +b c x +2 \sqrt {a c}\, \sqrt {\left (b x +a \right ) \left (d x +c \right )}+2 a c}{x}\right ) b^{4} c^{4} x^{4}-30 \sqrt {a c}\, \sqrt {\left (b x +a \right ) \left (d x +c \right )}\, a^{3} d^{3} x^{3}+382 \sqrt {a c}\, \sqrt {\left (b x +a \right ) \left (d x +c \right )}\, a^{2} b c \,d^{2} x^{3}-530 \sqrt {a c}\, \sqrt {\left (b x +a \right ) \left (d x +c \right )}\, a \,b^{2} c^{2} d \,x^{3}+210 \sqrt {a c}\, \sqrt {\left (b x +a \right ) \left (d x +c \right )}\, b^{3} c^{3} x^{3}-236 \sqrt {\left (b x +a \right ) \left (d x +c \right )}\, \sqrt {a c}\, a^{3} c \,d^{2} x^{2}+344 \sqrt {\left (b x +a \right ) \left (d x +c \right )}\, \sqrt {a c}\, a^{2} b \,c^{2} d \,x^{2}-140 \sqrt {\left (b x +a \right ) \left (d x +c \right )}\, \sqrt {a c}\, a \,b^{2} c^{3} x^{2}-272 \sqrt {\left (b x +a \right ) \left (d x +c \right )}\, \sqrt {a c}\, a^{3} c^{2} d x +112 \sqrt {\left (b x +a \right ) \left (d x +c \right )}\, \sqrt {a c}\, a^{2} b \,c^{3} x -96 \sqrt {\left (b x +a \right ) \left (d x +c \right )}\, a^{3} c^{3} \sqrt {a c}\right )}{384 a^{4} c \sqrt {\left (b x +a \right ) \left (d x +c \right )}\, x^{4} \sqrt {a c}}\) \(593\)

input
int((d*x+c)^(5/2)/x^5/(b*x+a)^(1/2),x,method=_RETURNVERBOSE)
 
output
1/384*(d*x+c)^(1/2)*(b*x+a)^(1/2)/a^4/c*(15*ln((a*d*x+b*c*x+2*(a*c)^(1/2)* 
((b*x+a)*(d*x+c))^(1/2)+2*a*c)/x)*a^4*d^4*x^4+60*ln((a*d*x+b*c*x+2*(a*c)^( 
1/2)*((b*x+a)*(d*x+c))^(1/2)+2*a*c)/x)*a^3*b*c*d^3*x^4-270*ln((a*d*x+b*c*x 
+2*(a*c)^(1/2)*((b*x+a)*(d*x+c))^(1/2)+2*a*c)/x)*a^2*b^2*c^2*d^2*x^4+300*l 
n((a*d*x+b*c*x+2*(a*c)^(1/2)*((b*x+a)*(d*x+c))^(1/2)+2*a*c)/x)*a*b^3*c^3*d 
*x^4-105*ln((a*d*x+b*c*x+2*(a*c)^(1/2)*((b*x+a)*(d*x+c))^(1/2)+2*a*c)/x)*b 
^4*c^4*x^4-30*(a*c)^(1/2)*((b*x+a)*(d*x+c))^(1/2)*a^3*d^3*x^3+382*(a*c)^(1 
/2)*((b*x+a)*(d*x+c))^(1/2)*a^2*b*c*d^2*x^3-530*(a*c)^(1/2)*((b*x+a)*(d*x+ 
c))^(1/2)*a*b^2*c^2*d*x^3+210*(a*c)^(1/2)*((b*x+a)*(d*x+c))^(1/2)*b^3*c^3* 
x^3-236*((b*x+a)*(d*x+c))^(1/2)*(a*c)^(1/2)*a^3*c*d^2*x^2+344*((b*x+a)*(d* 
x+c))^(1/2)*(a*c)^(1/2)*a^2*b*c^2*d*x^2-140*((b*x+a)*(d*x+c))^(1/2)*(a*c)^ 
(1/2)*a*b^2*c^3*x^2-272*((b*x+a)*(d*x+c))^(1/2)*(a*c)^(1/2)*a^3*c^2*d*x+11 
2*((b*x+a)*(d*x+c))^(1/2)*(a*c)^(1/2)*a^2*b*c^3*x-96*((b*x+a)*(d*x+c))^(1/ 
2)*a^3*c^3*(a*c)^(1/2))/((b*x+a)*(d*x+c))^(1/2)/x^4/(a*c)^(1/2)
 
3.8.21.5 Fricas [A] (verification not implemented)

Time = 1.21 (sec) , antiderivative size = 574, normalized size of antiderivative = 2.51 \[ \int \frac {(c+d x)^{5/2}}{x^5 \sqrt {a+b x}} \, dx=\left [-\frac {15 \, {\left (7 \, b^{4} c^{4} - 20 \, a b^{3} c^{3} d + 18 \, a^{2} b^{2} c^{2} d^{2} - 4 \, a^{3} b c d^{3} - a^{4} d^{4}\right )} \sqrt {a c} x^{4} \log \left (\frac {8 \, a^{2} c^{2} + {\left (b^{2} c^{2} + 6 \, a b c d + a^{2} d^{2}\right )} x^{2} + 4 \, {\left (2 \, a c + {\left (b c + a d\right )} x\right )} \sqrt {a c} \sqrt {b x + a} \sqrt {d x + c} + 8 \, {\left (a b c^{2} + a^{2} c d\right )} x}{x^{2}}\right ) + 4 \, {\left (48 \, a^{4} c^{4} - {\left (105 \, a b^{3} c^{4} - 265 \, a^{2} b^{2} c^{3} d + 191 \, a^{3} b c^{2} d^{2} - 15 \, a^{4} c d^{3}\right )} x^{3} + 2 \, {\left (35 \, a^{2} b^{2} c^{4} - 86 \, a^{3} b c^{3} d + 59 \, a^{4} c^{2} d^{2}\right )} x^{2} - 8 \, {\left (7 \, a^{3} b c^{4} - 17 \, a^{4} c^{3} d\right )} x\right )} \sqrt {b x + a} \sqrt {d x + c}}{768 \, a^{5} c^{2} x^{4}}, \frac {15 \, {\left (7 \, b^{4} c^{4} - 20 \, a b^{3} c^{3} d + 18 \, a^{2} b^{2} c^{2} d^{2} - 4 \, a^{3} b c d^{3} - a^{4} d^{4}\right )} \sqrt {-a c} x^{4} \arctan \left (\frac {{\left (2 \, a c + {\left (b c + a d\right )} x\right )} \sqrt {-a c} \sqrt {b x + a} \sqrt {d x + c}}{2 \, {\left (a b c d x^{2} + a^{2} c^{2} + {\left (a b c^{2} + a^{2} c d\right )} x\right )}}\right ) - 2 \, {\left (48 \, a^{4} c^{4} - {\left (105 \, a b^{3} c^{4} - 265 \, a^{2} b^{2} c^{3} d + 191 \, a^{3} b c^{2} d^{2} - 15 \, a^{4} c d^{3}\right )} x^{3} + 2 \, {\left (35 \, a^{2} b^{2} c^{4} - 86 \, a^{3} b c^{3} d + 59 \, a^{4} c^{2} d^{2}\right )} x^{2} - 8 \, {\left (7 \, a^{3} b c^{4} - 17 \, a^{4} c^{3} d\right )} x\right )} \sqrt {b x + a} \sqrt {d x + c}}{384 \, a^{5} c^{2} x^{4}}\right ] \]

input
integrate((d*x+c)^(5/2)/x^5/(b*x+a)^(1/2),x, algorithm="fricas")
 
output
[-1/768*(15*(7*b^4*c^4 - 20*a*b^3*c^3*d + 18*a^2*b^2*c^2*d^2 - 4*a^3*b*c*d 
^3 - a^4*d^4)*sqrt(a*c)*x^4*log((8*a^2*c^2 + (b^2*c^2 + 6*a*b*c*d + a^2*d^ 
2)*x^2 + 4*(2*a*c + (b*c + a*d)*x)*sqrt(a*c)*sqrt(b*x + a)*sqrt(d*x + c) + 
 8*(a*b*c^2 + a^2*c*d)*x)/x^2) + 4*(48*a^4*c^4 - (105*a*b^3*c^4 - 265*a^2* 
b^2*c^3*d + 191*a^3*b*c^2*d^2 - 15*a^4*c*d^3)*x^3 + 2*(35*a^2*b^2*c^4 - 86 
*a^3*b*c^3*d + 59*a^4*c^2*d^2)*x^2 - 8*(7*a^3*b*c^4 - 17*a^4*c^3*d)*x)*sqr 
t(b*x + a)*sqrt(d*x + c))/(a^5*c^2*x^4), 1/384*(15*(7*b^4*c^4 - 20*a*b^3*c 
^3*d + 18*a^2*b^2*c^2*d^2 - 4*a^3*b*c*d^3 - a^4*d^4)*sqrt(-a*c)*x^4*arctan 
(1/2*(2*a*c + (b*c + a*d)*x)*sqrt(-a*c)*sqrt(b*x + a)*sqrt(d*x + c)/(a*b*c 
*d*x^2 + a^2*c^2 + (a*b*c^2 + a^2*c*d)*x)) - 2*(48*a^4*c^4 - (105*a*b^3*c^ 
4 - 265*a^2*b^2*c^3*d + 191*a^3*b*c^2*d^2 - 15*a^4*c*d^3)*x^3 + 2*(35*a^2* 
b^2*c^4 - 86*a^3*b*c^3*d + 59*a^4*c^2*d^2)*x^2 - 8*(7*a^3*b*c^4 - 17*a^4*c 
^3*d)*x)*sqrt(b*x + a)*sqrt(d*x + c))/(a^5*c^2*x^4)]
 
3.8.21.6 Sympy [F]

\[ \int \frac {(c+d x)^{5/2}}{x^5 \sqrt {a+b x}} \, dx=\int \frac {\left (c + d x\right )^{\frac {5}{2}}}{x^{5} \sqrt {a + b x}}\, dx \]

input
integrate((d*x+c)**(5/2)/x**5/(b*x+a)**(1/2),x)
 
output
Integral((c + d*x)**(5/2)/(x**5*sqrt(a + b*x)), x)
 
3.8.21.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {(c+d x)^{5/2}}{x^5 \sqrt {a+b x}} \, dx=\text {Exception raised: ValueError} \]

input
integrate((d*x+c)^(5/2)/x^5/(b*x+a)^(1/2),x, algorithm="maxima")
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(a*d-b*c>0)', see `assume?` for m 
ore detail
 
3.8.21.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 3834 vs. \(2 (191) = 382\).

Time = 1.67 (sec) , antiderivative size = 3834, normalized size of antiderivative = 16.74 \[ \int \frac {(c+d x)^{5/2}}{x^5 \sqrt {a+b x}} \, dx=\text {Too large to display} \]

input
integrate((d*x+c)^(5/2)/x^5/(b*x+a)^(1/2),x, algorithm="giac")
 
output
-1/192*(15*(7*sqrt(b*d)*b^5*c^4*abs(b) - 20*sqrt(b*d)*a*b^4*c^3*d*abs(b) + 
 18*sqrt(b*d)*a^2*b^3*c^2*d^2*abs(b) - 4*sqrt(b*d)*a^3*b^2*c*d^3*abs(b) - 
sqrt(b*d)*a^4*b*d^4*abs(b))*arctan(-1/2*(b^2*c + a*b*d - (sqrt(b*d)*sqrt(b 
*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^2)/(sqrt(-a*b*c*d)*b))/(sqr 
t(-a*b*c*d)*a^4*b*c) - 2*(105*sqrt(b*d)*b^19*c^11*abs(b) - 1105*sqrt(b*d)* 
a*b^18*c^10*d*abs(b) + 5251*sqrt(b*d)*a^2*b^17*c^9*d^2*abs(b) - 14843*sqrt 
(b*d)*a^3*b^16*c^8*d^3*abs(b) + 27658*sqrt(b*d)*a^4*b^15*c^7*d^4*abs(b) - 
35546*sqrt(b*d)*a^5*b^14*c^6*d^5*abs(b) + 31990*sqrt(b*d)*a^6*b^13*c^5*d^6 
*abs(b) - 20006*sqrt(b*d)*a^7*b^12*c^4*d^7*abs(b) + 8413*sqrt(b*d)*a^8*b^1 
1*c^3*d^8*abs(b) - 2213*sqrt(b*d)*a^9*b^10*c^2*d^9*abs(b) + 311*sqrt(b*d)* 
a^10*b^9*c*d^10*abs(b) - 15*sqrt(b*d)*a^11*b^8*d^11*abs(b) - 735*sqrt(b*d) 
*(sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^2*b^17*c^ 
10*abs(b) + 5390*sqrt(b*d)*(sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + 
a)*b*d - a*b*d))^2*a*b^16*c^9*d*abs(b) - 16043*sqrt(b*d)*(sqrt(b*d)*sqrt(b 
*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^2*a^2*b^15*c^8*d^2*abs(b) + 
 22760*sqrt(b*d)*(sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a 
*b*d))^2*a^3*b^14*c^7*d^3*abs(b) - 8782*sqrt(b*d)*(sqrt(b*d)*sqrt(b*x + a) 
 - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^2*a^4*b^13*c^6*d^4*abs(b) - 20780* 
sqrt(b*d)*(sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^ 
2*a^5*b^12*c^5*d^5*abs(b) + 37250*sqrt(b*d)*(sqrt(b*d)*sqrt(b*x + a) - ...
 
3.8.21.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(c+d x)^{5/2}}{x^5 \sqrt {a+b x}} \, dx=\int \frac {{\left (c+d\,x\right )}^{5/2}}{x^5\,\sqrt {a+b\,x}} \,d x \]

input
int((c + d*x)^(5/2)/(x^5*(a + b*x)^(1/2)),x)
 
output
int((c + d*x)^(5/2)/(x^5*(a + b*x)^(1/2)), x)